

 Navigation

 	
 index

 	
 next |

 	ptp 0.1.1 documentation

Getting started

	Welcome!
	OWASP - OWTF in a word

	The goals aimed by ptp

	Installation
	Using pip

	From scratch

	Basic usage
	Auto-detection mode

	Explicit mode

	Attributes

	Unit tests

Hack into ptp

	Write our own support

	MyXMLParser class
	The skeleton

	Matching the supported reports

	Parsing methods

	Tell ptp

Documentation

	PTP

	Basic Parsers
	AbstractParser

	XMLParser

	FileParser

	LineParser

	Exceptions

	Constants

	Arachni
	Parser

	DirBuster
	Parser

	Signatures

	Metasploit
	Parser

	Signatures

	Nmap
	Parser

	OWASP
	CM-008

	Robots.txt
	Parser

	Signatures

	Skipfish
	Parser

	W3AF
	Parser

	Wapiti
	Parser

	Signatures

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2014, Tao Sauvage.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ptp 0.1.1 documentation

Welcome!

Here we present the ptp (Pentesters’ Tools Parser) project and answer
the What is it? What does it do? Why does it do it? How does it do it?
questions.

The project has been developed during the Google Summer of Code 2014, 10th
edition [https://www.google-melange.com/gsoc/homepage/google/gsoc2014], in
order to create an automated ranking system [https://www.owasp.org/index.php/GSoC2014_Ideas#OWASP_OWTF_-_Automated_Vulnerability_Severity_Rankings]
for the OWASP - OWTF project [https://www.owasp.org/index.php/OWASP_OWTF].

OWASP - OWTF in a word

The OWASP - OWTF project [https://www.owasp.org/index.php/OWASP_OWTF]
provides an efficient approach to combine the power of automation with the
out-of-the-box thinking that only the user can provide.

It gathers a complete set of plugins and merges their results into an
interactive report. The user has then the possibility to add notes, to change
details and to add media like screenshots in order to have a complete report.

The goals aimed by ptp

The primary goal of ptp is to enhance OWASP - OWTF in order to provide
an automated ranking for each plugin. This will allow the user to focus
attention on the most likely weak areas of a web application or network first,
which will be valuable to efficiently use the remaining time in a penetration
assessment.

Instead of evaluating every plugins run by OWASP - OWTF and defining the
rankings for each of them, thanks to ptp, the user will be able to focus
on the ones that have been ranked with the highest risks. The user is then able
to confirm or override the automated rankings since we estimate that she/he is
the only one that can accurately detect the false positives.

When developing the automated ranking system, ptp‘s main goal was joined
with a secondary one. Apart from its main feature which is ranking the
results from security tools reports, it also provides an unified way to
reuse these reports directly in your python code, without having to deal with
complex parsing.

Note

The long-term objective for ptp is to support all security tools and
tests. But ptp is in its early development phase and only supports
the main ones for now.

Installation

Using pip [http://pip.readthedocs.org/en/latest/installing.html]

The ptp library is available on PyPI [https://pypi.python.org/pypi]
at the following address: https://pypi.python.org/pypi/ptp.

The easiest way to install it is using pip [http://pip.readthedocs.org/en/latest/installing.html].

$ pip install ptp

Note

If an error occurs during the installation process, check your permissions.
It might be required to run pip [http://pip.readthedocs.org/en/latest/installing.html] as root.

From scratch

It is also possible to install the library from its repository. You will then
be able to use the latest possible version or even try the develop branch [https://github.com/owtf/ptp/tree/develop].

The first step is to clone the repository of the project:

$ git clone https://github.com/owtf/ptp.git

Then run the setup.py script:

$./setup.py install

Basic usage

Auto-detection mode

The ptp module provides the ptp.PTP class that exposes the
public API of the library.

The simplest way to use ptp.PTP is with the auto-detection mode.
This mode tries to reduce as much as possible our work by auto-detecting which
tool has generated a given report and use the corresponding
libptp.parser.AbstractParser.

That way, we do not need to know if the report we want to parse has been
generated by W3AF [http://w3af.org/], DirBuster [https://www.owasp.org/index.php/Category:OWASP_DirBuster_Project] or even
Skipfish [https://code.google.com/p/skipfish/].

Example:

>>> from ptp import PTP
>>> myptp = PTP(pathname='my/directory', filename='my_report')
>>> myptp.parse()
[{'ranking': 4}, ..., {'ranking': 3}, ..., {'ranking': 1}]

Note

In the example above, the filename could have been omitted. In that case,
ptp would have recursively walked into the directory pathname
until a file would have matched one supported tool.

For instance, we could have done:

>>> from ptp import PTP
>>> myptp = PTP(pathname='my/directory')
>>> myptp.parse()
[{'ranking': 4}, ..., {'ranking': 3}, ..., {'ranking': 1}]

Be careful though, when omitting the filename parameter, ptp will
stop as soon as a supported report file will be found! (i.e. ptp
will not parse all the files in the pathname directory.)

If we are only looking for the highest risk that is listed in the report, we
can use the following function:

>>> myptp.get_highest_ranking()
4
>>> from libptp.constants import HIGH
>>> myptp.get_highest_ranking() == HIGH
True

Note

To know the possible ranking values, please refer to the
Constants section.

Explicit mode

If we already know which tool has generated the report, we can explicitly give
that information to ptp.PTP. That will even speed up the whole process
since it will not have to lookup for the right parser.

The list of the supported tools can be found like below:

>>> PTP.supported
{
 'arachni': [<class 'libptp.tools.arachni.parser.ArachniXMLParser'>],
 'dirbuster': [<class 'libptp.tools.dirbuster.parser.DirbusterParser'>],
 'metasploit': [<class 'libptp.tools.metasploit.parser.MetasploitParser'>],
 'nmap': [<class 'libptp.tools.nmap.parser.NmapXMLParser'>],
 <class 'libptp.tools.wapiti.parser.WapitiXMLParser'>,
 <class 'libptp.tools.wapiti.parser.Wapiti221XMLParser'>
],
 'owasp-cm-008': [<class 'libptp.tools.owasp.cm008.parser.OWASPCM008Parser'>],
 'robots': [<class 'libptp.tools.robots.parser.RobotsParser'>]
 'skipfish': [<class 'libptp.tools.skipfish.parser.SkipfishJSParser'>],
 'wapiti': [
 'w3af': [<class 'libptp.tools.w3af.parser.W3AFXMLParser'>],
}

Warning

The current support to Nmap does not provide any ranking yet.
Refer to the Nmap section for more information.

Example:

>>> myptp = PTP('skipfish')
>>> myptp.parse(pathname='my/other/directory')
[{'ranking': 2}, {'ranking': 2}, {'ranking': 1}]

Attributes

If we are interested in the name of the tool that generated the report, it is
stored in the ptp.PTP.tool_name attribute and can be retrieved like
below:

>>> print(myptp.tool_name)
arachni # In our case, it is Arachni that has generated our report.

We can also retrieve the list of the vulnerabilities thanks to the
ptp.PTP.vulns attribute:

>>> myptp.vulns
[{'ranking': 4}, ..., {'ranking': 3}, ..., {'ranking': 1}]

And the metadata thanks to the ptp.PTP.metadata attribute.

>>> myptp.metadata
{'version': 'a.b'}

Unit tests

The ptp module can be tested by running the run_tests.py python
script.

$./run_tests.py

Note

Make sure the ./setup.py install has been successful before running the
script.

This script will run every existing unit tests that have been created for the
module. If an error occurs, the string FAIL will be outputted in the
terminal.

Note

It is possible to specify which unit test to run by specifying the name of
the tool.

$./run_tests.py arachni

Using the command above only runs the unit tests for Arachni.

 Copyright 2014, Tao Sauvage.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ptp 0.1.1 documentation

Write our own support

Here we explain how we can contribute to the project by hacking into
ptp‘s source code and enhance its list of supported tools.

First of all, we have to write a parser for our target tool. In our case, let
us assume that the tool is named MyTool and that we want to parse its XML
formatted reports.

The parser source code must be saved into the tools/<tool name>/ and
be named parser.py. Therefore, the parser for MyTool will be saved under
the name tools/mytool/parser.py.

MyXMLParser class

In order for ptp to correctly retrieve the information that are
contained in a tool report, it needs a specialized parser.

Let’s start by writing the skeleton of our parser class. Since we are aiming to
support MyTool‘s XML reports, XMLParser seems to be the best
class from which to inherit.

The XMLParser already defines
libptp.parser.XMLParser.handle_file() for us. This will initialize the
MyXMLParser.stream instance variable with a handle on the root node of
the file.

The skeleton

By convention, the class name must contain the format it parses (in our case
XML).

from libptp.parser import XMLParser

class MyXMLParser(XMLParser):
 """Specialized parser for MyTool."""

 __tool__ = 'mytool'
 __version__ = ['0.1']

 def __init__(self, pathname, filename='*.xml'):
 """Initialize MyXMLParser.

 :param str pathname: Path to the report directory.
 :param str filename: Regex matching the report file.

 """
 XMLParser.__init__(self, pathname, filename)

We added a couple of class attributes in order to give some information
about what tool is parsed by our class and the supported versions.

Since our parser inherits from XMLParser, we do not have to
specify the __format__ class attribute, which is already set to xml.

Note

In order to keep the tool name homogene with the rest of the code base,
__tool__ must be lowercased.

Also, both the __format__ and the __version__ attributes are optional.

For instance __version__ is optional because some tools don’t provide
such information (e.g. robots.txt).

Matching the supported reports

The next step is to write the is_mine() class method which tells
ptp whether or not it can parse the report file.

Let us say that MyTool‘s XML report has <mytool version=’x.x’>
as the root XML tag.

Therefore, our is_mine() function is:

class MyXMLParser(XMLParser):
 """Specialized parser for MyTool."""

 __tool__ = 'mytool'
 __version__ = ['0.1']

 # Omitted unchanged code

 @classmethod
 def is_mine(cls, pathname, filename='*.xml'):
 """Check if it is a supported MyTool report.

 :param str pathname: Path to the report directory.
 :param str filename: Regex matching the report file.

 :return: `True` if it supports the report, `False` otherwise.
 :rtype: :class:`bool`

 """
 try:
 stream = cls.handle_file(pathname, filename)
 except (ValueError, LxmlError):
 # If an error occurs when trying to open the file, then the
 # parser cannot deal with it.
 return False
 # The root tag must contain 'mytool'.
 if not cls.__tool__ in stream.tag:
 return False
 # Check if the root node has a 'version' attribute.
 if not 'version' in stream:
 return False
 # Check if the version is the one this parser supports.
 if not stream.get('version') in cls.__version__:
 return False
 return True

Parsing methods

Each AbstractParser class has to provide
two methods:

	libptp.parser.AbstractParser.parse_metadata() which parses the metadata
of the report and formats them into a dict [http://docs.python.org/library/stdtypes.html#dict].

	libptp.parser.AbstractParser.parse_report() which parses the
discoveries that are listed in the report and formats them into a
list of dict [http://docs.python.org/library/stdtypes.html#dict].

In order to keep it simple, we will not detail the implementations of these
methods for our fake tool.

from libptp.parser import XMLParser

class MyXMLParser(XMLParser):
 """Specialized parser for MyTool."""

 __tool__ = 'mytool'
 __version__ = ['0.1']

 def __init__(self, pathname, filename='*.xml'):
 """Initialize MyXMLParser.

 :param str pathname: Path to the report directory.
 :param str filename: Regex matching the report file.

 """
 XMLParser.__init__(self, pathname, filename)

 @classmethod
 def is_mine(cls, pathname, filename='*.xml'):
 """Check if it is a supported MyTool report.

 :param str pathname: Path to the report directory.
 :param str filename: Regex matching the report file.

 :return: `True` if it supports the report, `False` otherwise.
 :rtype: :class:`bool`

 """
 try:
 stream = cls.handle_file(pathname, filename)
 except (ValueError, LxmlError):
 # If an error occurs when trying to open the file, then the
 # parser cannot deal with it.
 return False
 # The root tag must contain 'mytool'.
 if not cls.__tool__ in stream.tag:
 return False
 # Check if the root node has a 'version' attribute.
 if not 'version' in stream:
 return False
 # Check if the version is the one this parser supports.
 if not stream.get('version') in cls.__version__:
 return False
 return True

 def parse_metadata(self):
 return {} # The expected behavior is to return a dict.

 def parse_report(self):
 return [] # The expected behavior is to return a list.

Tell ptp

Now that MyTool is supported thanks to our implementation of MyXMLParser,
we only have one more thing to do in order to finish.

We need to update the ptp.supported list attribute by inserting our
MyXMLParser inside like shown below:

Omitted imports

from tools.mytool.parser import MyXMLParser

class PTP(object):

 # Omitted lines

 supported = {

 # Omitted supported tools.

 'w3af': [W3AFReport],

 # Omitted supported tools.

 'mytool': [MyXMLParser]}

We have done it! We have written our own support to the tool MyTool and
integrated that into ptp!

Congratulations!

 Copyright 2014, Tao Sauvage.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ptp 0.1.1 documentation

PTP

 Copyright 2014, Tao Sauvage.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ptp 0.1.1 documentation

Basic Parsers

AbstractParser

XMLParser

FileParser

LineParser

 Copyright 2014, Tao Sauvage.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ptp 0.1.1 documentation

Exceptions

 Copyright 2014, Tao Sauvage.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ptp 0.1.1 documentation

Constants

 Copyright 2014, Tao Sauvage.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ptp 0.1.1 documentation

Arachni

Parser

 Copyright 2014, Tao Sauvage.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ptp 0.1.1 documentation

DirBuster

Parser

Signatures

 Copyright 2014, Tao Sauvage.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ptp 0.1.1 documentation

Metasploit

Note

Since Metasploit does not force the users to follow a specific syntax when
writing a module, PTP needs to know which plugin has
generated the report in order to find the right signature.

Parser

Signatures

 Copyright 2014, Tao Sauvage.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ptp 0.1.1 documentation

Nmap

Warning

The development of the Nmap ranking system has been postponed to after the
GSoC.
For now, the classes below only parse the XML reports generated by Nmap but
do not rank the discoveries.

Parser

 Copyright 2014, Tao Sauvage.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ptp 0.1.1 documentation

OWASP

CM-008

OWASP-CM-008 [https://www.owasp.org/index.php/Test_HTTP_Methods_(OTG-CONFIG-006)] tests
the HTTP methods of a website that are available.

Parser

Signatures

 Copyright 2014, Tao Sauvage.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ptp 0.1.1 documentation

Robots.txt

Parser

Signatures

 Copyright 2014, Tao Sauvage.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ptp 0.1.1 documentation

Skipfish

Parser

 Copyright 2014, Tao Sauvage.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ptp 0.1.1 documentation

W3AF

Parser

 Copyright 2014, Tao Sauvage.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 previous |

 	ptp 0.1.1 documentation

Wapiti

Parser

Signatures

 Copyright 2014, Tao Sauvage.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	ptp 0.1.1 documentation

Index

 Copyright 2014, Tao Sauvage.
 Created using Sphinx 1.2.2.

 _static/plus.png

_static/ajax-loader.gif

_static/comment.png

_static/down.png

_static/comment-close.png

_static/up.png

_static/up-pressed.png

_static/down-pressed.png

_static/comment-bright.png

_static/file.png

search.html

 Navigation

 		
 index

 		ptp 0.1.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Tao Sauvage.
 Created using Sphinx 1.2.2.

_static/minus.png

